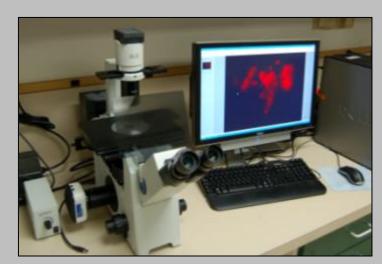
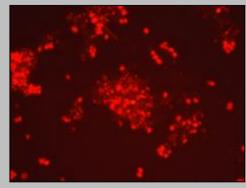
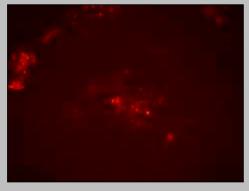
Solids Management in Biofloc-Based Aquaculture Systems



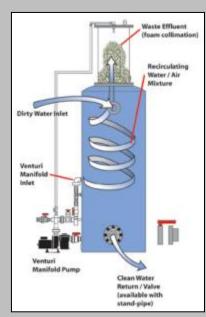

Andrew J. Ray and Jeffrey M. Lotz


Gulf Coast Research Laboratory
The University of Southern Mississippi, Ocean Springs, MS 39564 USA
AndrewJRay@gmail.com

Characterizing Suspended Solids

- TSS (Total Suspended Solids)
- VSS (Volatile Suspended Solids)
- Turbidity
- Settlable Solids
- Floc Volume Index
- Particle Size
- Microbial Composition
 - Microscopy
 - Phenotypic Techniques
 - Molecular Techniques
- Microbial Function
 - Oxygen Production/Demand
 - Nutrient Cycling
- De Schryver et al. 2008

Why Control Biofloc Concentration?

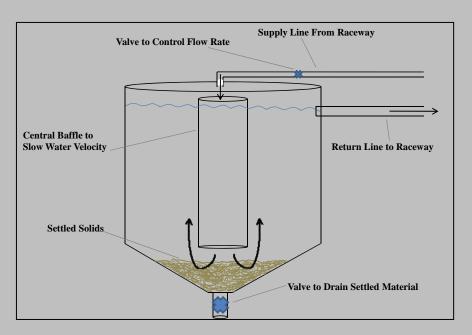

- Issues with excessive particles
 - Gill Clogging
 - Increased Biochemical Oxygen Demand (BOD)
 - Promote the Occurrence of Harmful Microorganisms
 - \ \ Light Penetration
 - Cyanobacteria, zooplankton blooms?, dinoflagellates?
 - Potential for Sludge Deposition
- Control over culture systems
 - Microbiota
 - Remove unwanted organisms
 - Promote a younger/healthier community
 - System Stability
 - Nutrient Removal/Cycling

Particulate Control

- Bead Filters/Sand Filters
 - Inadequate for intensive biofloc systems (ex. Mishra et al. 2008)
 - Particle load/water use
 - Size? Cost?

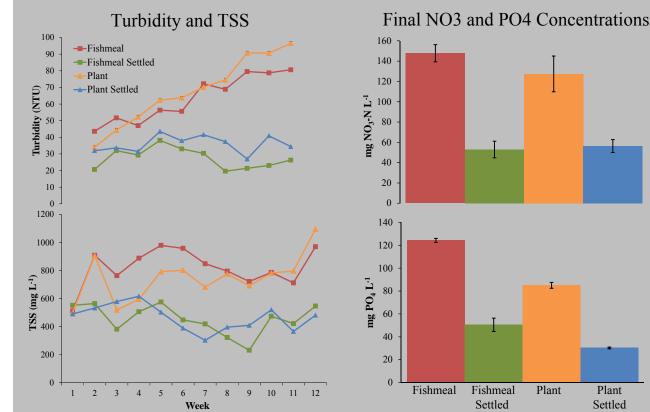
Foam Fractionators

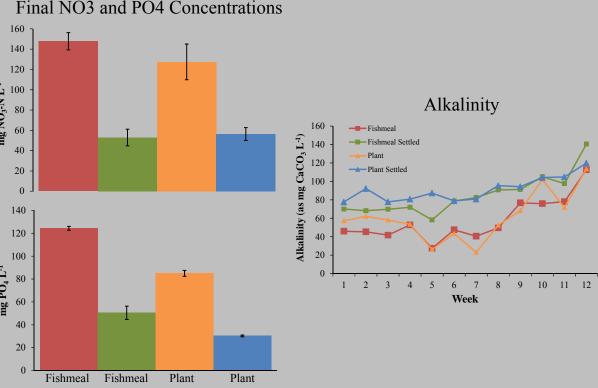
- Benefits
 - Not prone to fouling
 - Range of particle sizes
 - Dissolved components
- Drawback


http://www.emperoraquatics.com/images/ff diagram.jpg

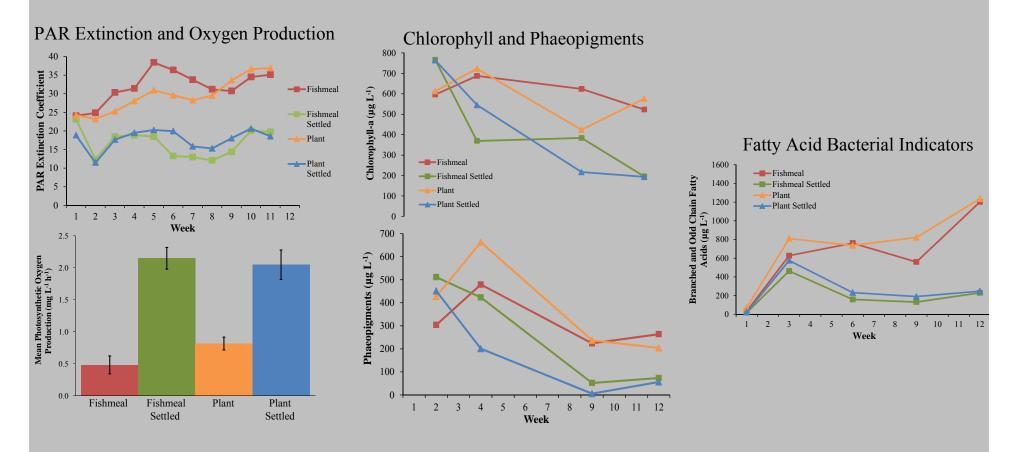
- Can be inconsistent in what they remove and how much
 - » Dependent on: bubble diameter, solids concentration, air-towater ratio, surface chemistry of solids, and the surfactant concentration in water
 - » Cost?

Sedimentation


Gravity


- Ponds/tanks with drains
- External ponds
- External chambers
 - Benefits
 - Simple
 - Inexpensive
 - Scale up or down easily
 - Anaerobic zone separate
 from culture unit
 - Not prone to fouling
 - Denitrification
 - Drawbacks
 - Small particles?
 - Dissolved components?
 - Surface mats???

The Effects of Solids Management on Water Quality

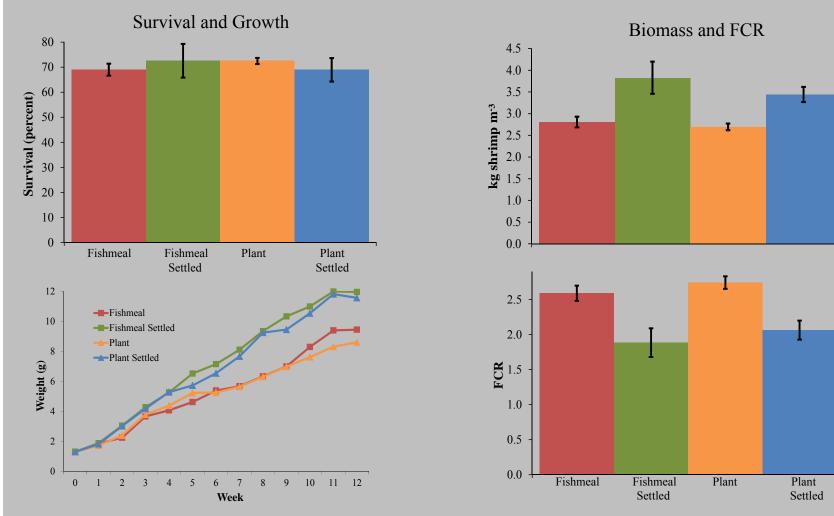


- Settling Chambers in Shrimp BFT
 - 6200 L circular, outdoor tanks
 - 2 experiments one year apart
 - Exp. A = 16 tanks
 - Exp. B = 32 tanks
 - ½ tanks with settling chambers,
 ½ without

- BFT Settling Chambers Exp. A
 - 59% ↓ TSS
 - $-60\% \downarrow NO_3-N$
 - 61% ↓ Orthophosphate
 - 33% ↑ Alkalinity
 - Denitrification???

Solids Management and Microbial Communities

• BFT Settling Chambers – Exp. A


- 47% ↓photosynthetically active radiation extinction coefficient
- 200% ↑ photosynthetic oxygen production
- 65% ↓ final chlorophyll-a
- 72% ↓ final phaeopigments
- 80% ↓ fatty acid bacterial indicators

Solids Management and Microbial Communities

• Microbes – Exp. B

- No detectable difference with respect to chlorophyte, diatom, or dinoflagellate abundance
- 60% ↓ in final nematode abundance
- 19% ↓ in final rotifer abundance
- 23% (visual), 17% (epifluorescence) ↓ final cyanobacteria abundance
- 60% ↓ final fatty acid bacterial indicators

Solids Management and Shrimp Production

Shrimp Production – Exp. A

- No significant difference in survival
- 28% Increase in growth rate

- 41% Increase in final biomass
- 26% Decrease in FCR

Needed Research

• Refining the optimal concentration of biofloc particles = This Afternoon!

- Remediation of Removed Material
 - Dissolved Nutrients
 - Sequence batch reactors
 - Plants
 - Solids
 - Nutritional supplement
 - = This Afternoon!

Thank You

- Shrimp aquaculture research at The GCRL is supported by The USDA US Marine Shrimp Farming Program.
- The two experiments described here were conducted at the Waddell Mariculture Center, Bluffton, South Carolina, USA; thank you to the staff of that facility.